				1
D.P	.Code: 20CE1005 R20 H.T.No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)	(:: PUT	TUR	
М.1	Fech. I Year II Semester Regular & Supplementary Examinati FEM IN STRUCTURAL ENGINEERING	ons Ju	Jy-20)25
	(Structural Engineering)			
`im	e: 3 Hours (Answer all Five Units 5 x 12 = 60 Marks)	Max.	Mark	cs: 60
	UNIT-I			
1	Explain the different steps involved in FEM.	CO1	L1	12M
L	OR	COI		12111
2	What is potential energy? State and explain the principle of minimum	CO1	L1	12M
	potential energy.			
	UNIT-II			
3	Derive Stiffness matrix for 1D – two noded linear bar element.	CO2	L2	12M
	OR			
4	Briefly explain shape function and derive shape function for 1D - three	CO2	L2	12M
	noded line element.			
	UNIT-III			
5	Derive shape functions for four noded rectangular elements. Use natural	CO3	L2	12M
	co-ordinate system.			
	OR			
6	Write and briefly explain the different types of elements for plain stress	CO3	L2	12M
	and plain strain analysis.			
	UNIT-IV			
7	Explain the terms isoparametric, sub parametric and super parametric	CO 4	L2	12M
	elements.			

- OR
- Explain the formulation of 4-noded 2-D isoparametric quadrilateral CO4 8 **L2 12M** element. Derive the strain displacement matrix and stiffness matrix.

UNIT-V

Explain about different types of 3-D solid elements. **12M** 9 **CO5** L2

OR

What are the three dimensional stresses and strains explain the relation CO5 10 L2 **12M** between them.

*** END ***